ATTENTION !!!
TAKE CARE TO FOLLOW THE SAFETY INSTRUCTIONS
IN CAPTURE 1 OF THE

INSTRUCTION MANUAL FNDX 5!

ACHTUNG !!!
BEFOLGEN SIE GENAU DIE SICHERHEITSHINWEISE
IN KAPITEL 1 VON DER

BEDIENUNGSANLEITUNG FNDX 5!

OBSERVANCE:
THIS SERVICE MANUAL CAN ONLY BE USED IN COMBINATION WITH THE
CORRESPONDING INSTRUCTION MANUAL FOR THE FNDX 5!

THE INDICES IN THIS SERVICE MANUAL ARE AN ADDITION OF THE
CHAPTERS IN THE INSTRUCTION MANUAL!

ZUR BEACHTUNG:
DAS SERVICE MANUAL KANN NUR IN VERBINDUNG MIT DER
BEDIENUNGSANLEITUNG FNDX 5 VERWENDET WERDEN!

DIE INHALTE IN DIESEM SERVICE MANUAL SIND EINE ERWEITERUNG VON
DEN KAPITELN IN DER BEDIENUNGSANLEITUNG!

THIS SERVICE MANUAL IS ONLY INFORMATION FOR QUALIFIED
TECHNICIANS!
EACH POINT MAY USE ONLY BY AN AUTHORIZED COLENTA TECHNICIAN!
<table>
<thead>
<tr>
<th>Index</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before installation</td>
<td>1</td>
</tr>
<tr>
<td>Location</td>
<td>1</td>
</tr>
<tr>
<td>Electrical supply</td>
<td>1</td>
</tr>
<tr>
<td>Internal Water circuit</td>
<td>2</td>
</tr>
<tr>
<td>Water drain</td>
<td>2</td>
</tr>
<tr>
<td>Internal chemistry circuit</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry drains</td>
<td>3</td>
</tr>
<tr>
<td>Chemical replenishment system</td>
<td>4</td>
</tr>
<tr>
<td>Transportation on site and assembling</td>
<td>5</td>
</tr>
<tr>
<td>Assemly the fix rack with spraybar</td>
<td>6</td>
</tr>
<tr>
<td>Mounting of rollers fix rack 1</td>
<td>6</td>
</tr>
<tr>
<td>Mounting of spraybar</td>
<td>6</td>
</tr>
<tr>
<td>Adjustment of spraybar</td>
<td>7</td>
</tr>
<tr>
<td>Mounting of rollers fix rack 2</td>
<td>7</td>
</tr>
<tr>
<td>Additional to the fix rack</td>
<td>8</td>
</tr>
<tr>
<td>Additional to installation of the racks</td>
<td>8</td>
</tr>
<tr>
<td>Additional to installation of the dryer rack</td>
<td>8</td>
</tr>
<tr>
<td>The first steps</td>
<td>9</td>
</tr>
<tr>
<td>Additional to the first steps</td>
<td>9</td>
</tr>
<tr>
<td>Using the chemistries</td>
<td>9</td>
</tr>
<tr>
<td>Index</td>
<td>page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Processor functions</td>
<td>10</td>
</tr>
<tr>
<td>Additional safety devices</td>
<td>10</td>
</tr>
<tr>
<td>Filter system of developer</td>
<td>11</td>
</tr>
<tr>
<td>How to replace the filter insert</td>
<td>11</td>
</tr>
<tr>
<td>System of chiller assy</td>
<td>13</td>
</tr>
<tr>
<td>How to fill the cooling liquid</td>
<td>13</td>
</tr>
<tr>
<td>Setup jumper</td>
<td>15</td>
</tr>
<tr>
<td>Setup of the processor</td>
<td>16</td>
</tr>
<tr>
<td>The before mentioned values are defined as following</td>
<td>17</td>
</tr>
<tr>
<td>Flowchart</td>
<td>18</td>
</tr>
<tr>
<td>I2C Bus overview</td>
<td>19</td>
</tr>
<tr>
<td>Test instruction for I2C Bus system</td>
<td>20</td>
</tr>
<tr>
<td>Trouble shooting</td>
<td>23</td>
</tr>
<tr>
<td>Service report</td>
<td>27</td>
</tr>
<tr>
<td>Notes</td>
<td>last sites</td>
</tr>
</tbody>
</table>
1.1.1 BEFORE INSTALLATION
*) Site preparation, e.g., water supply, drainage electrical supply must be completed prior installation.

1.1.2 LOCATION
*) Processor can be installed "through-the-wall" or completely in the darkroom. Required measurements can be taken from the processor specification sheet. For "through-the-wall", a purpose built panel is required (optional accessory).

1.1.3 ELECTRICAL SUPPLY
*) All electrical connections must meet national safety requirements. Correct fuses and electrical requirement can be taken from the processor specification sheet.

1.1.4 WATER SUPPLY
*) The processor must be connected to the local water supply by using a DVGW-approved system separating device or pipe separating device.

*) The cold water supply pipe must have a stopcock fitted connection to the processor and should be done by using the 3/4" hose connector, supplied. Easy access to the stopcock should be provided as it has to be opened and closed daily.

*) A built in magnetic valve reduces water consumption to a maximum of 2.0 ltr./minute using pressure and quantity control.

*) It is recommended to run a second cold water supply with 2.5 meters of hosing to facilitate easy cleaning of the racks and tanks (water supply kit - optional accessory).
1.1.5 INTERNAL WATER CIRCUIT

*) The wash water should be drained separately according to local environmental regulations. The Processor comes with the suitable hose connections.

*) The level of the water drain should be as low as possible with a minimum drainpipe diameter of Ø40 mm.

2.1.1 WATER DRAIN

*) The wash water should be drained separately according to local environmental regulations. The Processor comes with the suitable hose connections.

*) The level of the water drain should be as low as possible with a minimum drainpipe diameter of Ø40 mm.
2.1.2 INTERNAL CHEMISTRY CIRCUIT

- DEV / FIX
- Circulation
- Overflow tube
- Heat exchanger 350W with cooling
- Drain DEV/FIX
- Circulation inlet tube

NOTE:
For the DEV there is additional a filter installed. See more in chapter 5.1.3 "Filter System for Developer"

2.1.3 CHEMISTRY DRAINS

- Drain WASH
- Water
- FIX
- DEV
- Water Supply

CLOSED
OPEN
3.1.1 Chemical Replenishment System

When operating a processor which uses chemicals for the continuous production of plate/film it is very important that the chemicals within the machine are keep in good working order so as to provide consistent processing quality.

To achieve this consistency we use replenishment solutions, which are formulated by the chemical manufacturer and injected into the processor precisely for the area of material being produced. Replenishment of the chemical tanks is done automatically using infra red sensors located at the entrance to the processor. These sensors accurately monitor the width of material entering the processor, this information is in then used by the microprocessor (CPU) control software to calculate the surface area for each plate loaded into the processor.

Each sensor, when covered, will generate a pulse, which is then recorded on a decoder and counted – the more sensors that are covered then the faster the count. When the count reaches the programmed value of pulse counts it triggers the start of a replenishment cycle.

During each replenishment cycle the replenishment pumps inject fresh solution from small storage bottles/tank and into the corresponding "working" tank solutions for a pre-set time.

NOTE:
A Level control device for replenisher tank is optional available on request.

WARNING:

*) Do not use brass or copper in the drainage system.

*) Chemistry disposal must be in accordance with local environmental regulations.

*) To avoid back pressure in the drain, the hoses should be free of bends and with a constant downward gradient.
4.1.1 TRANSPORTATION ON SITE AND ASSEMBLING

The transport to the installation area can be done easily by two men.

WARNING:
DURING TRANSPORT ALL RACKS AND DRYER MUST BE TAKEN OUT OF PROCESSOR !!

IMPORTANT:
The Processor must be installed leveled for optimum performance.
5.1.1 ASSEMBLY THE FIX TANK WITH SPRAYBAR

CAUTION:
Pay attention to the Roller configuration about the FIX Rack!

<table>
<thead>
<tr>
<th>Position</th>
<th>Teile Nr.</th>
<th>Beschreibung</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>90 16 606</td>
<td>Einzugswalze gerillt, PE 32 schwer</td>
<td>Input roller fluted, PE 32 heavy</td>
</tr>
<tr>
<td>22</td>
<td>90 17 425</td>
<td>Einzugswalze PE 25 schwer</td>
<td>Input roller, PE 25 heavy</td>
</tr>
<tr>
<td>23</td>
<td>90 15 179</td>
<td>Eingangswalze Fix, Stahl 19</td>
<td>Input roller Fix, Steel 19</td>
</tr>
</tbody>
</table>

5.1.2 MOUNTING OF THE ROLLERS 16 AND 22 IN THE CORRECT ORDER

5.1.3 MOUNTING OF THE SPRAYBAR
5.1.4 ADJUSTMENT OF THE SPRAYBAR

adjustable flowrate regulator

fixing nut

hose connector for spray-bar

5.1.5 MOUNTING OF THE ROLLER 23 IN THE CORRECT ORDER

Be sure, that the spray-bar sheet not contact the steel roller - not to shear of.
6.1.1 ADDITIONAL TO INSTALLATION OF THE RACKS

*) The processor is delivered complete assembled, except the transport racks, dryer and film catch tray.
*) Transport fixings must be removed before use.
*) Insert each rack at the location indicated by reference number or label.
*) Rinse the tanks with water and then fill it to the red marker on the tank wall.
*) Insert the racks according the reference number or label
*) Turn on the transport motor and check rotation
*) Insert racks carefully and slowly, avoiding chemistry splashes.

RACK 1 in the developer tank
RACK 2 in the fixer tank
RACK 3 in the water tank

6.1.2 ADDITIONAL TO INSTALLATION OF THE DRYER-RACK

Dryer Rack in the dryer
7.1.1 THE FIRST STEPS

WARNING:
Separate the Film Processor from mains. To do so, switch the main power switch of the Filmprocessor to “0” position.
Wear safety goggles, protection gloves and clothing!

7.1.2 ADDITIONAL TO THE FIRST STEPS

We recommend that the machine is fully water tested on installation before filling with chemistry – this is just a safety procedure in case of transport damage.

*) Thoroughly clean processor ensuring no packing materials restricts the free running of the processor.
 Pay special attention to the racks and inside of the tanks.
*) Close the drain taps for the developer, fixer and wash.
*) Fill the tanks (Dev, Fix and Wash) with water to the markers on the tank wall.
*) Switch on the processor
*) Check for signs of leakage.

7.1.3 USING THE CHEMISTRIES

*) Only use chemistry suitable for roller transport systems.
*) Follow instructions of chemistry manufacturers.

FIXER BATH:

*) Empty fixer tank by opening the fix drain tap.
*) Remove the Fixer-rack.
*) Check fixer tank is free of alien material.
*) Close fix drain tap.
*) Fill fixer tank with ready-to-use-fixer solution to the red marker on the tank wall.
 Insert the Fixer-rack very carefully and slowly, add hardener solution if advised by the chemistry manufacturer.

DEVELOPER BATH:

*) Empty developer tank by opening dev drain tap.
*) Remove the Developer-rack.
*) Check developer tank is free of alien material.
*) Close dev drain tap.
*) Fill developer tank with ready-to-use-developer solution to the red marker on the tank wall.
 Insert the developer-rack very carefully and slowly. Replenishment tanks may be used to mix the chemistry. Any remaining can be used for replenishment. **CAUTION:**

Even the smallest quantity of fixer could contaminate the developer solution. Therefore, always fill with fixer first.
When removing the fixer rack, always cover the developer tank.
For removing the fixer rack use rack carrier tray (optional accessory).
8.1.1 PROCESSOR FUNCTIONS

Programming:
Automatic processing parameters, e.g., temperature, speed and replenishment rates, can be stored in 9 different programmes.

Warm-Up Time:
Once programmed, temperature settings are accurately controlled. Constant solution temperatures are maintained in the processing tanks. Temperatures tolerances +/- 0.2 °C are achieved by the microprocessor control unit while the solutions are circulated by circulation pumps. When temperature has reached PRE-SET levels, the processor enters STANDBY mode and is ready for use.

Standby:
In case no film is in process - after a fixed period of time and when, after the last plate leaves the dryer, the processor transport, dryer and water supply is switched off automatically. The processor goes to standby mode. During standby, the processor activates two important features: ANTI-OXIDATION and ANTI-CRYSTALIZATION programmes.

Anti-Oxidation:
During STANDBY mode - and in long periods of no production, a preprogrammable ANTI-OXIDATION cycle (replenishment cycle) is initiated. The additional replenishment compensates the impact of air oxidation of the chemistry during standby mode and maintain chemistry levels in the tanks, in order to compensate evaporation of the water in the solutions.

Anti-Crystalization:
During STANDBY mode - within a programmable cycle period - the transport rollers and the gum pump are activated - this helps to prevent crystalization build-up on the rollers.

Automatic Replenishment:
The processor is equipped with a film area measuring system. Infrared sensors scan the incoming plate area and when the preprogrammed amount of plate (area) enters the processor, a replenishment cycle will be activated.

Automatic (Start-Stop):
Infrared sensors also automatically control the start cycle of the film processor. The film processor changes from STANDBY to RUN once a film has interrupted the light barrier. As the rollers turn, water is supplied to the wash tank and to the intermediate rinse bath system. Once the last film has passed through, the film processor reverts to STANDBY. The film can be taken out of the receiving basket or top cover lid.

9.1.1 ADDITIONAL SAFETY DEVICES

*) Thermostatically controlled solution heater with overheating CUT-OUT and AUTO-RESET.
*) Thermostatically controlled dryer heater with overheating CUT-OUT and MANUAL-RESET.
*) All electric motors are equipped with thermal CUT-OUT and AUTO-RESET.
*) Each electrical component is protected by a fuse on the power distribution board (PDB).
10.1.1 FILTER SYSTEM FOR DEVELOPER

During working, the filter has to be installed inside the processor.

If you want to change/replace the filter insert, mount the filter on the frame like in the pictures.

CAUTION:
To change the filter cartridge it is necessary that the filter system is fixed on the main frame.

NOTE:
Mount the side panel to the processor and fix it with the mounting screws.

10.1.2 HOW TO REPLACE THE FILTER INSERT

1. Switch off the processor using the *Main power switch*

2. Open the closing sheet
3. Remove the Filter Cover
4. Take out the used filter cartridge

5. Check position of the O-ring inside filterhousing
6. Put in the new filter cartridge slowly and carefully

7. Close the filter system in the reversed sequence as described before (step 2)

CAUTION:
After the insert has been replaced, place the filter inside the processor again.

IMPORTANT:
After the filter has been replaced, reset the filter log.
Go to **programming** mode menu **Options/Filter/Log** and **clear** the processed area to 0000.
11.1.1 SYSTEM OF THE CHILLER ASSY

If you want to change/add the Cooling liquid, follow the steps below:

11.1.2 HOW TO FILL THE COOLING LIQUID

1. Switch off the processor using the *Main power switch*

2. Open the marked Stop cock to the Chiller Assy
3. Press the red button all the time during the filling!

4. Fill in Cooling Liquid carefully up to 3/4 of the Filter using a funnel, while pressing the red button!

CAUTION:
Do not fill in more than up to 3/4 of the Cooling Liquid Tank!

5. Close the marked Stop cock to the Chiller Assy

IMPORTANT:
After the first cooling cycle, control the level of the cooling liquid. Contingently fill up the cooling liquid to the right level. Inspection glass should be filled 3/4.
ADDIION FOR AUTHORIZED TECHNICANS

12.1.1 SETUP JUMPER

It is possible to see data and to change working data in the SETUP menu but to save any new data entered into the SETUP menu then it will be necessary to insert a jumper on the main board of the processor:

When selecting **Save** in the setup menu, the program will refuse to save the data unless this wire jumper is present.

DO NOT forget to remove the Jumper after service!
Otherwise the cooling is switched continuously!!!

CAUTION:
The shaft of the main drive motor has a tachometer installed.
When the drive motor starts the tacho will rotate to generate a speed counter which sends pulses to the Processor CPU.
By using these pulses the CPU is able to accurately control the transport speed/timing sequences after entering the Setup-Menue:
12.1.2 SETUP OF THE PROCESSOR

Switch on the processor, use 1-time and you will see:

Use to move to Setup and confirm with .

There are about 10 pages, which depend on the mechanical construction and must be entered during the factory setup.

Gear 137 pls/m
Pump 06.7 ml/s

Gear is the number of motor pulses corresponding to 1m advance of the material. It is needed to calculate the processed film area (for the replenishment) and the processing speed in cm/min.

Pump is the number of milliliters per second of the replenishment pump.

Sensor distance 072 mm

Sensor distance is the distance between two sensors of the sensorbar. It is needed for the film area calculation.

Power save 1 (1-yes, 0-no)

Power save. If set to 1 (yes) the tank2 heater will be switched off whenever the tank1 and the dryer heaters are both on, regardless of the tank2 temperature. This to keep the total power consumption in legal limits.

Replenish after each 0.125 sq.m.

Replenish after. This is that area, after one replenishment cycle has to be activated.

Pause between sw heaters 1000 ms

Pause between sw heaters. Is used to prevent any possible disturbances back to the power line / power supply (Dryer heater power is splitted / switched time-delayed)

T1 Str 0012 pls
T1 End 0091 pls

T1 Str - startpoint of the DEV-rack
T1 End - endpoint of the DEV-rack

T2 Str 0180 pls
T3 End 0269 pls

T2 End - startpoint of the Fix-rack
T3 End - endpoint of the WASH-rack

DR End 0344 pls
Wat.ref t_out 20

DR End - endpoint after the dryer
Wat.ref t_out - Timeout from automatic Water refill
If water level sensor is not reached in this time - Error message: Can't fill water

Wat Str 0135 pls
Wat End 0274 pls

Wat Str - startpoint when the wash valve is on
Wat End - endpoint when the wash valve is off

Film checking 0
(1-yes, 0-no)

0 = Normal mode
1 = Feeder mode, if the machine is Online with a Auto Feeder, set the value to “1”. Film is checked from input to feeder until input to processor before the next film is loaded into the feeder.

Use Save to store your adjustments
(The setup jumper described before has to be installed and on PDB LD9 is on) or use Cancel to leave.

DO NOT forget to remove the setup jumper! Otherwise the cooling is switched continuously!!!
12.1.3 THE BEFORE MENTIONED VALUES ARE DEFINED AS FOLLOWING

EEPROM CRC CHECK
The setup, standby options, and the three programs are stored in EEPROM residing on the PDB. To ensure the data validity in this EEPROM, a CRC is used. It is almost impossible that the software recognizes a new EEPROM containing random data, as a valid one.

The program startup follows this sequence:
Checks the setup data CRC. If not valid, an error message “Setup Invalid” appears and you are taken to the programming menu. If the CRC is OK, program continues further.
Next, the Standby options CRC is checked. If invalid you get “Options invalid” and proceed to programming mode.
Next, Program 1 CRC is checked. If invalid you get “Program 1” and proceed to programming mode.

Only if all of the above is OK, the processor will run in work mode.

Note that P2 P9 are not required to be valid, just P1. However, if P2 P9 has invalid CRC, when attempting to switch to that program, you’ll get an error message “Program invalid”.
Program version: MF800 V2.8 r09a

- **Display switch OFF/ON**
- **Cursor position**
- **Return to last or main menu**

Flowchart

- **Program Options Setup RS232**

Program

- **P1 Modify**
 - Tank1 time 100sec
 - T1 26.0 °C
- **P2 Modify**
 - T2 26.0 °C
 - T3 45.0 °C
- **P3 Modify**
 - R1 0700ml/sqm
 - R2 1400ml/sqm
- **...**
- **P9 Modify**
 - Save Cancel

Setup

- **Gear 137 pls/m**
- **Pump 06.7 ml/s**
- **Sensor distance 072mm**
- **Power save 1**
- **Replenish after each 0.125 sqm**
- **...**
- **Save Cancel**

Options

- **Standby**
 - SB dryer drop 20
 - SB replenish: 200ml each 2 h
 - SB self-cleaning 20cm each 10min
 - Save Cancel

- **Refill**
 - Wash autorefill 1 (1-yes,0-no)
 - T1 autorefill add 0300 ml
 - T2 autorefill add 0300 ml
 - T2 autorefill add 0300 ml
 - Save Cancel

- **Filter**
 - Area
 - Filter alert after 0900 sqm
 - Save Cancel

- **Log**
 - 0000.00
 - Exit Clear

- **RS232**
 - RS232 on 0 (1-yes,0-no)
 - Baudrate 0-4800
 - 1-9600 2-19200
 - Timeout 05 sec
 - Send in 01 sec
 - Save Cancel

- **Use**
 - P1 Ready
 - T1 = 26.0 °C
 - T2 = 26.0 °C
 - T3 = 45.0 °C
 - Rep1 = 0700 ml/sqm
 - Rep2 = 1400 ml/sqm
 - Tank 1 time 100s
 - Dry to dry 435s
 - Speed 34.6 cm/min

- **Monitor**
 - DDDFFFFF
 - WWWWDDDD
 - Motor Off
 - Speed 16 001
 - Normal s-bar
 - Area = 0.0000 sqm.
 - S-bar: ---------
 - H1 = 0 H2 = 0 Hd1 = 0
 - H2d = 0 Fan = 0 Ws = 0
 - Refill 1000
 - Refill 2000
13.1.1 I²C-BUS - OVERVIEW

Probes positioned under solution levels precisely monitor all solution tank temperatures. These temperature probes are continuously supplying information to the microprocessor on actual solution temperatures within the tanks. The microprocessor then compares these actual temperatures to the required programmed "set" temperatures and controls the relevant heaters/cooling systems accordingly.

To transfer this information, an I²C-Bus System is installed.

Temperature probe DRY
Temperature probe FIX
Temperature probe DEV

Temperature probe DRYER
DRYER......RED
FIX............BLUE
DEV..........YELLOW

Sensorbar

PDB MF 800

CPU MF 800

ST12 ST10 ST-3
14.1.1 TEST INSTRUCTION FOR THE I²C-BUS SYSTEM

Testing of the I²C-Bus is easy!

Prior to the test disconnect all elements of the I²C-Bus System and follow the necessary working steps:

1. Connect the Display to the Main Board PDB (ST3)
2. Install the Cable between Main Board PDB (ST12) and the Distribution Board (ST-6)
3. Connect the Temperature sensor DRYER to the Distribution Board (ST-5)
4. Connect the Temperature sensor FIX to the Distribution Board (ST-4)
5. Connect the Temperature sensor DEV to the Distribution Board (ST-3)
6. Install the Sensorbar to the Distribution Board (ST-2)

14.1.2 CONNECT THE DISPLAY TO THE PDB (ST3)

If it’s O.K. it will show the Software identification and the electronic will go in operation mode.

14.1.3 INSTALL A CABLE BETWEEN PDB (ST12) AND THE I²C-BOARD (ST-6)

If no trouble is shown, the connection Cable + the Distribution Board will be O.K.
14.1.4 CONNECT THE SENSOR DRYER TO THE I²C-BOARD (ST-5)
Press  to see T2 (FIX) and T3 (DRYER) also. If no trouble is shown, then the sensor will be O.K.
On the Display will be shown the actual measured temperature +/- 1 °C.
If “???” or some other indefinable signs are shown the temperature sensor is defective!

14.1.5 CONNECT THE SENSOR FIX TO THE I²C-BOARD (ST-4)
If no trouble is shown, then the sensor will be O.K.
On the Display will be shown the actual measured temperature +/- 1 °C.
If “???” or some other indefinable signs are shown the temperature sensor is defective!
14.1.6 CONNECT THE SENSOR DEV TO THE I²C-BOARD (ST-3)
Press ◀ to see T2 (FIX) and T3 (DRYER). If no trouble is shown, then the sensor will be O.K.
On the Display will be shown the actual measured temperature +/- 1 °C.
If “???” or some other indefinable signs are shown the temperature sensor is defective!

14.1.7 INSTALL THE SENSORBAR TO THE I²C-BOARD (ST-2)
If no trouble is shown, then the sensor will be O.K. If all sensors are O.K. you can see in the monitor program.
15.1.1 TROUBLE SHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tank1 too cold</td>
<td>a) Developer bath temperature is too low</td>
<td>a) Check the Heat up time, check Developer temperature in 2-3 minutes, 1°C temperature increase</td>
</tr>
<tr>
<td></td>
<td>b) Heater problem</td>
<td>b) Check in the Monitor mode H1, check the LD3 on main board and check the Fuse F3</td>
</tr>
<tr>
<td></td>
<td>c) No circulation in the bath</td>
<td>c) Check the Circulation pump, check the LD7 on Main board and check the Fuse F7</td>
</tr>
<tr>
<td>2. Tank1 too warm</td>
<td>a) Chiller doesn't work</td>
<td>a) Check the Cooling assembly, check the LD9 on Main board and check the Fuse F9</td>
</tr>
<tr>
<td></td>
<td>b) Cooling Pump</td>
<td>b) Check the Cooling Circulation Pump</td>
</tr>
<tr>
<td></td>
<td>c) to less Cooling Fluid</td>
<td>c) Check the fill level of the Cooling Fluid using the inspection glass</td>
</tr>
<tr>
<td>3. Tank2 too cold</td>
<td>see point 1</td>
<td>see point 1, check the Fuse F4 / LD4, check the Fuse F7 / LD7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>see point 1, check the Fuse F7 / LD7</td>
</tr>
<tr>
<td>4. Tank2 too warm</td>
<td>see point 2</td>
<td>see point 2, check the Fuse F9 / LD9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>see point 2, check the Fuse F9 / LD9</td>
</tr>
<tr>
<td>5. Dryer to warm</td>
<td>a) Set temperature is too low (lower than room temperature)</td>
<td>a) Change the Set temperature</td>
</tr>
<tr>
<td></td>
<td>b) main board defective</td>
<td>b) Change main board</td>
</tr>
<tr>
<td></td>
<td>c) Solid State</td>
<td>c) Solid State Relais defective</td>
</tr>
<tr>
<td>6. Motor overload</td>
<td>a) Main Drive assembly blocked</td>
<td>a) Check the main drive for easy running</td>
</tr>
<tr>
<td></td>
<td>b) Main drive chain to much tension</td>
<td>b) Check the chain</td>
</tr>
<tr>
<td></td>
<td>c) Film jam in the racks</td>
<td>c) Check the racks</td>
</tr>
<tr>
<td>7. Cover opened</td>
<td>a) The cover of the machine is not closed correctly</td>
<td>a) Check the machine cover</td>
</tr>
<tr>
<td></td>
<td>b) the cover switch is damaged</td>
<td>b) Check function of the cover switch</td>
</tr>
<tr>
<td>Problem</td>
<td>Possible Cause</td>
<td>Correction</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| 8. Main Drive and Dryer run continuously | a) Main Drive was started in "manual mode"
 b) Material always under the sensorbar. Material not transported/pulled into the processor
 c) Sensor/s at the sensorbar is/are wet or dirty
 d) Main board defective | a) Check in the manual programm if "STOP" is shown; stop the transport with the button.
 CAUTION: If also an automatic cycle is started by the sensor bar this cycle will end first.
 b) Check the Input rubber roller, check if a film is on the film table under the sensorbar.
 c) Clean the sensor/s
 d) Change the Main board |
| 9. Material wet when exiting processor | a) Dryer temperature is too low
 b) Transport speed to high
 c) Unusable or wrong Developer or Fixer
 d) Dryer blows only cold air | a) Increase the Dryer temperature (max. 60 °C)
 b) Lower the Transport speed
 c) Increase the Replenishment rate or change the chemicals
 d) Fuse F4 of the Heater Dry defective or solid state relais defective, or dryer heating elements defective, or thermoswich from heating element is open |
| 10. Temperature problems
 Temperature is shown incorrect. | The Temperature probes has to be positioned according their code. | a) The Temperature probes are colour coded
 Developer ... Yellow
 Fixer ... Blue
 Dryer ... Red |
| 11. No fresh water supply | a) Water tap is closed
 b) Water valve is blocked or faulty
 c) Main board defective | a) Open the Water tap
 b) Clean the small Filter in the valve, or exchange it
 c) Check the Fuse F8 / LD8 |
| 12. Circulation pump don't work | a) Pump wheel is blocked by dirt
 b) no electrical power | a) Clean the Pump wheel and make shure easy running
 b) Check the Fuse F7 / LD7 |
| 13. Level in water tank to high, Water tank Overflows | a) Water drain/overflow blocked
 b) Worse water drain installation | a) Clean the Water tank and clean the Overflow and the Water drain
 b) Modify the Water drain installation |
<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Correction</th>
</tr>
</thead>
</table>
| 14. Level in Developer- or Fixertank to low. | a) Tank leaks
b) Too low Replenishment rate or too long Anti-Oxid.cycle
c) Replenishment container empty
d) no electrical power on the Replenishment pumps | a) Seal the Tank leak
b) Increase the Replenishment rate or decrease the Anti-Oxid.cycle time
c) Fill up the Replenishment containers
d) Check the Fuse F5 / F6, check the Fuse LD5 / LD6 and clean the Replenishment pump or exchange it |
| 15. Chemical temperature can't be reached | a) Incorrect temperature
b) Temperature sensor is faulty
c) The processor was started without liquid in tanks. The safety fuses at the heating element have interrupted the current supply
d) PDB is faulty | a) Program the temperature correctly
b) Replace the temperature sensor
c) Reset the safety Fuse.
d) Replace PDB |
| 16. Scratches or pressure marks | a) Unsuitable handling of the processing materials
b) Cross over rollers are dirty.
c) Bent guide bars
d) PDB is faulty | a) Handle material carefully
b) Clean all rollers above the fluid level
c) Clean and check guide bars. If necessary, replace it
d) Replace PDB |
| 17. Material remains in the Processor | a) Material fed incorrectly
b) Material has excessive curl
c) Material is too thin
d) Rollers are not rotating | a) The material must be fed in straight
b) Fold leading edges and feed in the processor
c) Use a leader to process
d) Check gears and the position of the loose rollers |
| 18. Processor could not be switched on | a) Main cable isn't plugged
b) Main Fuse is faulty | a) Plug in main cable correctly
b) Check the Main Fuse F1 |
| 19. Paper of Film too dark | a) Developer temperature is too high
b) Processing time is too slow.
c) Exposure time is too long
d) After new chemistry: starteris missing | a) Decrease developer temperature
b) Increase processing time
c) Reduce exposure time
d) Add starter according to instructions |
<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Paper of Film too light</td>
<td>a) Bath temp is too low</td>
<td>a) Adapt the bath temperature to the recommended process or change chemistry</td>
</tr>
<tr>
<td></td>
<td>b) Transport speed is too high</td>
<td>b) Decrease transport speed</td>
</tr>
<tr>
<td></td>
<td>c) Exposure time is too short</td>
<td>c) Increase exposure time</td>
</tr>
<tr>
<td></td>
<td>d) Bath level is too deep (no heating and circulation)</td>
<td>d) Fill bath to the right level and check Replenish-tanks</td>
</tr>
<tr>
<td></td>
<td>e) Developer exhausted</td>
<td>e) Replenish or change chemistry</td>
</tr>
<tr>
<td></td>
<td>f) Fixer getting into developer (Dev becomes cloudy)</td>
<td>f) Carefully clean the tank and replace chemistry</td>
</tr>
<tr>
<td></td>
<td>g) Exposure settings are incorrect or machine is faulty</td>
<td>g) Adjust setting or repair faults</td>
</tr>
<tr>
<td>21. Paper or Film is fogged</td>
<td>a) Light leak in darkroom or cassette</td>
<td>a) Seal off light leak</td>
</tr>
<tr>
<td></td>
<td>b) Incorrect darkroom light</td>
<td>b) Check the Filter, wattage and distance from the dark room lamp to the processor</td>
</tr>
<tr>
<td></td>
<td>c) Material is outdated</td>
<td>c) Check the date of maturity</td>
</tr>
<tr>
<td>22. Paper or Film has yellow-green surface</td>
<td>a) Unsuitable hand processing material is used</td>
<td>a) Only use material suitable for roller processing</td>
</tr>
<tr>
<td></td>
<td>b) Fixer is exhausted</td>
<td>b) Replenish or change chemistry</td>
</tr>
<tr>
<td></td>
<td>c) Level of fixer bath has dropped (Temperature safety fuse has been activated)</td>
<td>c) Check level of the Replenishment containers and fill up the bath to the required level</td>
</tr>
<tr>
<td></td>
<td>d) Circulation pumps have failed</td>
<td>d) Check the pump motor and eventually replace it</td>
</tr>
</tbody>
</table>
16.1.1 SERVICE REPORT

This Service-Report may use only by an qualified COLENTA Service-Technican!

CAUTION:

All listed points in this Service-Report must be conducted professionally!
The listed points must be tested in a specified sequence as below.

If there are any deficiencies found, the qualified Service-Technician must repair the defects accordingly!

After the trouble shooting and remedy of all deficiencies a new Service-Report must be created.
All listed points in this Service-Report must be conducted again till the Processor is working correctly!

The Safety Inspector must record each Testing-Step on the Service-Report!
The measured test values and the general information about the test equipment
must be recored also in the Service-Report.
The Safety Inspector confirm with the notes "Location, Date and Signature" the data of each Testing-Step.

WARNING:
Prior to all actions, the Power Supply of the Processor must be disconnected!

Direct Connection: Turn the Main Switch of the Processor (installation side) to the position "0".
Secure the Main switch against switching on and check the voltage-free parts.

Plug Connection: Disconnect the Power Plug of the Processor.

PROZESSOR: FNDX 5
SERIAL NUMBER: ..
SOFTWARE-REVISION: ..

16.1.2 TESTING THE GROUNDING CONDUCTOR

The voltage resistor value between all grounded components of the Processor and the Power Plug
must be less than 300 mV (mOhm)

Processor:

- Terminal clamp of the grounding in the processor mV F □ O.K. F □ not O.K.
- Main switch - mounting plate mV F □ O.K. F □ not O.K.
- E-Box-Cover mV F □ O.K. F □ not O.K.
- Mounting plate of the Solid-State-Relais mV F □ O.K. F □ not O.K.
- Main filter Corcom 20VB6 F7354 mV F □ O.K. F □ not O.K.
- E-Box-Housing mV F □ O.K. F □ not O.K.
- Printed circuit board track (ST21) mV F □ O.K. F □ not O.K.
- Exhaust Fan (Plug ST34) mV F □ O.K. F □ not O.K.
- Heating Tank 1 (Housing) mV F □ O.K. F □ not O.K.
- Heating Tank 2 (Housing) mV F □ O.K. F □ not O.K.
Service Manual for FNDX 5

<table>
<thead>
<tr>
<th>Component</th>
<th>Voltage</th>
<th>O.K.</th>
<th>not O.K.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Replenishment pump Tank 1 (ST15/1)</td>
<td>mV</td>
<td>F O.K.</td>
<td>F not O.K.</td>
</tr>
<tr>
<td>- Replenishment pump Tank 2 (ST16/1)</td>
<td>mV</td>
<td>F O.K.</td>
<td>F not O.K.</td>
</tr>
<tr>
<td>- Dryer Fan</td>
<td>mV</td>
<td>F O.K.</td>
<td>F not O.K.</td>
</tr>
<tr>
<td>- Dryer-Housing (Heating)</td>
<td>mV</td>
<td>F O.K.</td>
<td>F not O.K.</td>
</tr>
<tr>
<td>- Magnet valve Spraybar Fixer (ST8/1)</td>
<td>mV</td>
<td>F O.K.</td>
<td>F not O.K.</td>
</tr>
<tr>
<td>- Processor-Frame</td>
<td>mV</td>
<td>F O.K.</td>
<td>F not O.K.</td>
</tr>
<tr>
<td>- Processor-Mounting Plate</td>
<td>mV</td>
<td>F O.K.</td>
<td>F not O.K.</td>
</tr>
</tbody>
</table>

Feeder:

<table>
<thead>
<tr>
<th>Component</th>
<th>Voltage</th>
<th>O.K.</th>
<th>not O.K.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Grounding Screw Power Supply Side panel</td>
<td>mV</td>
<td>F O.K.</td>
<td>F not O.K.</td>
</tr>
<tr>
<td>- Fan</td>
<td>mV</td>
<td>F O.K.</td>
<td>F not O.K.</td>
</tr>
<tr>
<td>- Power Supply-Mountingflnge</td>
<td>mV</td>
<td>F O.K.</td>
<td>F not O.K.</td>
</tr>
<tr>
<td>- Feeder-Construction</td>
<td>mV</td>
<td>F O.K.</td>
<td>F not O.K.</td>
</tr>
<tr>
<td>- Film Infeed Giude</td>
<td>mV</td>
<td>F O.K.</td>
<td>F not O.K.</td>
</tr>
</tbody>
</table>

Safety Tester: ..

ID-No. Tester: ..

Calibration Date: ..

Safety Inspector: ..

Location, Date: ..

16.1.3 ISOLATION RESISTOR

The *isolation voltage resistor value* between the grounding conductor of the Processor and all electrical components (L/N) must be *less than 2 mV (mOhm)!*

Processor:

<table>
<thead>
<tr>
<th>Component</th>
<th>Voltage</th>
<th>O.K.</th>
<th>not O.K.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Main Switch to the position "1"</td>
<td>mV</td>
<td>F O.K.</td>
<td>F not O.K.</td>
</tr>
</tbody>
</table>

Safety Tester: ..

ID-No. Tester: ..

Calibration Date: ..

Safety Inspector: ..

Location, Date: ..
16.1.4 LEAKAGE CURRENT (ERSATZ-ABLEITSTROM)

Only the measure of the "Backup-Leakage Current" value is possible with the Safety Tester!

The Leakage Current must be less than 4 mA (mAmpere)!

Processor:
- Main Switch to the position "1" mA

 - F [] O.K. F [] not O.K.

Safety Tester: ..

ID-No. Tester: ..

Calibration Date: ..

Safety Inspector: ..

Location, Date: ..

16.1.5 VISUAL INSPECTION

The Safety Inspector must make a visual check of all surfaces and assembled components!

a) Are the electrical conduction/cables installed in the E-Box accordingly? F [] O.K. F [] not O.K.

 - It is not allowed that Primary lines are in touch with the blank Secondary Parts.

 - It is not allowed that Secondary lines are in touch with the blank Primary Parts.

b) Are the ground conductor connections installed professionally and safe? F [] O.K. F [] not O.K.

c) Is the Strain/Pull Relief of the Power Cord correct? (Hand test) F [] O.K. F [] not O.K.

 - Strain/Pull Relief of the Processor

 - Strain/Pull Relief of the Power Plug

d) Check the Power Cable und the Power Plug for damages! F [] O.K. F [] not O.K.

e) Exist the Nameplate/Typelabel on the Processor and is it completely? F [] O.K. F [] not O.K.

f) Are all Covers mounted in the right position check the surfaces? F [] O.K. F [] not O.K.

g) Are all protective conductor connections connected and installed safety? F [] O.K. F [] not O.K.

h) Are all Processor Side Panels fix and screwed on correctly? F [] O.K. F [] not O.K.

i) Are all Feeder Side Panels and the Top Cover fix and screwed on correctly? F [] O.K. F [] not O.K.

j) The Processor Dryer Rack with the Support Bracket on the left side, must be secured against mechanical extraction! F [] O.K. F [] not O.K.

Safety Inspector: ..

Location, Date: ...
16.1.6 CHECK OF THE INTERLOCK SWITCH
The Safety Inspector must make sure that the Covers are mounted correctly!

Processor:
- Interlock Switch is fix and safety

Safety Inspector: ...
Location, Date: ...

16.1.7 ACCEPTANCE TESTRUN OF THE PROCESSOR
The Safety Inspector must make a Testrun as described in the Instruction Manual and have to check the full function!

Processor:
- minimum 1 Heat-up phase of the Heating components checked
- Testrun like in the Instruction Manual described done and completed

Safety Inspector: ...
Location, Date: ...

16.1.8 TEST FOR LEAKS
The Safety Inspector must check the whole Hose-System and must test the Processor for leaks!

Processor:
- Internal and external Piping and Hose-System

Safety Inspector: ...
Location, Date: ...

ACCEPTANCE BILL:
A complete technical inspection has been carried out and specific problems has been discussed with the customer.